Sensor-Based Exploration: The Hierarchical Generalized Voronoi Graph

نویسندگان

  • Howie Choset
  • Joel W. Burdick
چکیده

The hierarchical generalized Voronoi graph (HGVG) is a new roadmap developed for sensor-based exploration in unknown environments. This paper defines the HGVG structure: a robot can plan a path between two locations in its work space or configuration space by simply planning a path onto the HGVG, then along the HGVG, and finally from the HGVG to the goal. Since the bulk of the path planning occurs on the one-dimensional HGVG, motion planning in arbitrary dimensioned spaces is virtually reduced to a one-dimensional search problem. A bulk of this paper is dedicated to ensuring the HGVG is sufficient for motion planning by demonstrating the HGVG (with its links) is an arc-wise connected structure. All of the proofs in this paper that lead toward the connectivity result focus on a large subset of spaces in R3, but wherever possible, results are derived in Rm. In fact, under a strict set of conditions, the HGVG (the GVG by itself) is indeed connected, and hence sufficient for motion planning. The chief advantage of the HGVG is that it possesses an incremental construction procedure, described in a companion paper, that constructs the HGVG using only line-of-sight sensor data. Once the robot constructs the HGVG, it has effectively explored the environment, because it can then use the HGVG to plan a path between two arbitrary configurations. KEY WORDS—sensor-based exploration, skeletons, roadmap, Voronoi diagrams, motion planning

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensor Based Motion Planning : The Hierarchical Generalized Voronoi Graph

The hierarchical generalized Voronoi graph (HGVG) is a roadmap that can serve as a basis for sensor based robot motion planning. A key feature of the HGVG is its incremental construction procedure that uses only line of sight distance information. This work describes basic properties of the HGVG and the procedure for its incremental construction using local range sensors. Simulations and experi...

متن کامل

Sensor Based Motion Planning: The Hierarchical Generalized Voronoi Graph

The hierarchical generalized Voronoi graph (HGVG) is a roadmap that can serve as a basis for sensor based robot motion planning. A key feature of the HGVG is its incremental construction procedure that uses only line of sight distance information. This work describes basic properties of the HGVG and the procedure for its incremental construction using local range sensors. Simulations and experi...

متن کامل

Sensor - Based Exploration : Incremental Construction of the Hierarchical Generalized Voronoi

This paper prescribes an incremental procedure to construct roadmaps of unknown environments. Recall that a roadmap is a geometric structure that a robot uses to plan a path between two points in an environment. If the robot knows the roadmap, then it knows the environment. Likewise, if the robot constructs the roadmap, then it has effectively explored the environment. This paper focuses on the...

متن کامل

Mobile Robot Online Motion Planning Using Generalized Voronoi Graphs

In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...

متن کامل

To appear in 1995 IEEE International

This paper prescribes an incremental procedure to construct the Generalized Voronoi Graph (GVG) and the Hierarchical Generalized Voronoi Graph (HGVG) detailed in the companion paper [4]. The procedure requires only local distance sensor measurements, and therefore the method can be used as a basis for sensor based planning algorithms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2000